Algebraic Expression Simplification 9
Let $ x, $ $ y, $ and $ z $ be real numbers such that $ x + y + z = 6 $ and $ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2 $. Find \[\frac{x + y}{z} + \frac{y + z}{x} + \frac{x + z}{y}.\]
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$