Arithmetic Sequence Term Count
For each positive integer $ k $, let $ S_k $ denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is $ k $. For example, $ S_3 $ is the sequence $ 1,4,7,\ldots $. For how many values of $ k $ does $ S_k $ contain $ 2005 $ as a term?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$