Base Conversion Puzzle 1
In this problem, $ a $ and $ b $ are positive integers. When $ a $ is written in base $ 9 $, its last digit is $ 5 $. When $ b $ is written in base $ 6 $, its last two digits are $ 53 $. When $ a-b $ is written in base $ 3 $, what are its last two digits? Assume $ a-b $ is positive.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$