Base Conversion Sum 2
A base-10 integer $ n $ can be represented as $ 32_a $ in one base and $ 23_b $ in another base, where $ a $ and $ b $ are any integer bases larger than 3. What is the smallest possible sum $ a $+$ b $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We start by changing the expressions to base 10 in terms of $ a $ and $ b $. We also know that the two expressions should be equal since they represent the same number. \begin{align*}
32_a&=23_b\quad\Rightarrow\\
3\cdot a+2\cdot 1&=2\cdot b +3\cdot1\quad\Rightarrow\\
3a+2&=2b+3\quad\Rightarrow\\
3a&=2b+1.\end{align*}
For the smallest sum $ a+b $, we would want the smallest bases $ a $ and $ b $. $ a $ and $ b $ must be greater than 3, so we'll let $ a=4 $ and that means $ 12=2b+1 $ and $ b $ is not an integer. Next we try $ a=5 $ and that means $ 15=2b+1 $ and $ b=7 $. That means our sum is $ 5+7=\boxed{12} $. We can check that both expressions work: $ 32_5=3\cdot5+2=17 $ and $ 23_7=2\cdot7+3=17 $.
Also, it makes sense that $ a=5 $ works while $ a=4 $ does not since $ 3a $ must be odd for $ b $ to be an integer ($ 3a-1=2b $ means $ 3a $ must be even after subtracting 1), and for $ 3a $ to be odd, $ a $ must also be odd.
Alternatively, we can just try different bases. The smallest possible value for $ a $ and $ b $ is 4. If we let $ b=4 $, we'd need a smaller base for $ a $ (since we have $ 3\cdot a\approx2\cdot b $), which isn't possible. When we let $ a=4 $, we get $ 32_4=14 $ and try to find a $ b $ such that $ 23_b=14 $. That means $ 2b+3=14 $ and $ b $ is not an integer. When we let $ a=5 $, we get $ 32_5=17 $ and try to find a $ b $ such that $ 23_b=17 $. If $ 2b+3=17 $, then $ b=7 $ and we still get $ a+b=\boxed{12} $.