Base Representation Ending
In base $ 10 $, the number $ 2013 $ ends in the digit $ 3 $. In base $ 9 $, on the other hand, the same number is written as $ (2676)_{9} $ and ends in the digit $ 6 $. For how many values of $ b $ does the base-$ b $-representation of $ 2013 $ end in the digit $ 3 $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$