Binomial Sum
Compute $ \dbinom{4}{0}+\dbinom{4}{1}+\dbinom{4}{2}+\dbinom{4}{3}+\dbinom{4}{4} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We have \begin{align*}
\dbinom{4}{0}&+\dbinom{4}{1}+\dbinom{4}{2}+\dbinom{4}{3}+\dbinom{4}{4} \\
&= \dfrac{4!\phantom{}}{0!4!\phantom{}} + \dfrac{4!\phantom{}}{1!3!\phantom{}} + \dfrac{4!\phantom{}}{2!2!\phantom{}} + \dfrac{4!\phantom{}}{3!1!\phantom{}} + \dfrac{4!\phantom{}}{4!0!\phantom{}} \\
&= \dfrac{4\cdot 3\cdot 2\cdot 1}{4\cdot 3\cdot 2\cdot 1} + \dfrac{4\cdot 3\cdot 2\cdot 1}{1\cdot 3\cdot 2\cdot 1} + \dfrac{4\cdot 3\cdot 2\cdot 1}{2\cdot 1\cdot 2\cdot 1}\\
&\qquad + \dfrac{4\cdot 3\cdot 2\cdot 1}{3\cdot 2\cdot 1\cdot 1} + \dfrac{4\cdot 3\cdot 2\cdot 1}{4\cdot 3\cdot 2\cdot 1} \\
&= 1 + 4 + \dfrac{4\cdot3}{2} + 4 + 1 \\
&= 1 + 4 + 6 + 4 + 1 \\
&= \boxed{16}.\end{align*}
Notice that this is $ 2^4 $. There is an explanation for this: $$\dbinom{4}{0}+\dbinom{4}{1}+\dbinom{4}{2}+\dbinom{4}{3}+\dbinom{4}{4}$$is the sum of the number of ways to choose $ 0 $, $ 1 $, $ 2 $, $ 3 $, or $ 4 $ out of $ 4 $ objects. This accounts for every way of choosing any number of the $ 4 $ objects. There are $ 2\times 2\times 2\times 2 = 2^4 $ ways of doing so, because there are two options for each object: choose that object or don't choose it.