Cameras' Synchronized Times

There are two cameras that take pictures of a traffic intersection. Camera A starts taking pictures at $ 6 $ AM and takes a picture every $ 11 $ minutes. Camera B starts taking pictures at $ 7 $ AM and takes pictures every $ 7 $ minutes. Camera A and Camera B take a picture at the same time at four different times before noon. When Camera A and Camera B take their last picture together, how many minutes before noon is it?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$