Circle Equation Minimum X
Let $ (x,y) $ be an ordered pair of real numbers that satisfies the equation $ x^2+y^2=14x+48y $. What is the minimum value of $ x $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Moving all the terms to the LHS, we have the equation $ x^2-14x+y^2-48y=0 $. Completing the square on the quadratic in $ x $, we add $ (14/2)^2=49 $ to both sides. Completing the square on the quadratic in $ y $, we add $ (48/2)^2=576 $ to both sides. We have the equation \[(x^2-14x+49)+(y^2-48y+576)=625 \Rightarrow (x-7)^2+(y-24)^2=625\]Rearranging, we have $ (x-7)^2=625-(y-24)^2 $. Taking the square root and solving for $ x $, we get $ x=\pm \sqrt{625-(y-24)^2}+7 $. Since $ \sqrt{625-(y-24)^2} $ is always nonnegative, the minimum value of $ x $ is achieved when we use a negative sign in front of the square root. Now, we want the largest possible value of the square root. In other words, we want to maximize $ 625-(y-24)^2 $. Since $ (y-24)^2 $ is always nonnegative, $ 625-(y-24)^2 $ is maximized when $ (y-24)^2=0 $ or when $ y=24 $. At this point, $ 625-(y-24)^2=625 $ and $ x=-\sqrt{625}+7=-18 $. Thus, the minimum $ x $ value is $ \boxed{-18} $.
--OR--
Similar to the solution above, we can complete the square to get the equation $ (x-7)^2+(y-24)^2=625 $. This equation describes a circle with center at $ (7,24) $ and radius $ \sqrt{625}=25 $. The minimum value of $ x $ is achieved at the point on the left side of the circle, which is located at $ (7-25,24)=(-18,24) $. Thus, the minimum value of $ x $ is $ \boxed{-18} $.