Collinear Vectors Constants
There exist constants $ p $ and $ q $ so that for any vectors $ \mathbf{a}, $ $ \mathbf{b}, $ and $ \mathbf{c}, $ the vectors $ \mathbf{a} - 2 \mathbf{b} + 3 \mathbf{c}, $ $ 2 \mathbf{a} + 3 \mathbf{b} - 4 \mathbf{c}, $ and $ p \mathbf{b} + q \mathbf{c} $ are always collinear. Enter the ordered pair $ (p,q) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$