Complex Function Iteration 1
Let $ F(z)=\frac{z+i}{z-i} $ for all complex numbers $ z\not= i, $ and let $ z_n=F(z_{n-1}) $ for all positive integers $ n $. Given that $ z_0=\frac 1{137}+i, $ find $ z_{2002} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$