Complex Function Iteration 2

Let $ f(z)= \frac{z+a}{z+b} $ and $ g(z)=f(f(z)) $, where $ a $ and $ b $ are complex numbers. Suppose that $ \left| a \right| = 1 $ and $ g(g(z))=z $ for all $ z $ for which $ g(g(z)) $ is defined. What is the difference between the largest and smallest possible values of $ \left| b \right| $?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$