Complex Function Iteration 2
Let $ f(z)= \frac{z+a}{z+b} $ and $ g(z)=f(f(z)) $, where $ a $ and $ b $ are complex numbers. Suppose that $ \left| a \right| = 1 $ and $ g(g(z))=z $ for all $ z $ for which $ g(g(z)) $ is defined. What is the difference between the largest and smallest possible values of $ \left| b \right| $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$