Complex Number Analysis
Let $ z_1 = 18 + 83i $, $ z_2 = 18 + 39i, $ and $ z_3 = 78 + 99i, $ where $ i^2 = -1 $. Let $ z $ be the unique complex number with the properties that $ \frac{z_3 - z_1}{z_2 - z_1} \cdot \frac{z - z_2}{z - z_3} $ is a real number and the imaginary part of $ z $ is the greatest possible. Find the real part of $ z $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$