Complex Power Values
Let $ \omega $ be a complex number such that
\[\omega + \frac{1}{\omega} = 1.\]Find all possible values of
\[\omega^n + \frac{1}{\omega^n},\]where $ n $ is a positive integer.
Enter all possible values, separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
From the equation $ \omega + \frac{1}{\omega} = 1, $ $ \omega^2 + 1 = \omega, $ so
\[\omega^2 - \omega + 1 = 0.\]Then $ (\omega + 1)(\omega^2 - \omega + 1) = 0, $ which expands as $ \omega^3 + 1 = 0 $. Hence, $ \omega^3 = -1 $.
We divide into cases where $ n $ is of the form $ 3k, $ $ 3k + 1, $ and $ 3k + 2 $.
If $ n = 3k, $ then
\[\omega^n + \frac{1}{\omega^n} = \omega^{3k} + \frac{1}{\omega^{3k}} = (\omega^3)^k + \frac{1}{(\omega^3)^k} = (-1)^k + \frac{1}{(-1)^k}.\]If $ k $ is even, then this becomes 2, and if $ k $ is odd, then this becomes $ -2 $.
If $ n = 3k + 1, $ then
\begin{align*}
\omega^n + \frac{1}{\omega^n} &= \omega^{3k + 1} + \frac{1}{\omega^{3k + 1}} = (\omega^3)^k \omega + \frac{1}{(\omega^3)^k \omega} \\
&= (-1)^k \omega + \frac{1}{(-1)^k \omega} \\
&= (-1)^k \frac{\omega^2 + 1}{\omega} \\
&= (-1)^k \frac{-\omega}{\omega} \\
&= (-1)^k.\end{align*}This can be $ 1 $ or $ -1 $.
And if $ n = 3k + 2, $ then
\begin{align*}
\omega^n + \frac{1}{\omega^n} &= \omega^{3k + 2} + \frac{1}{\omega^{3k + 2}} = (\omega^3)^k \omega^2 + \frac{1}{(\omega^3)^k \omega^2} \\
&= (-1)^k \omega^2 + \frac{1}{(-1)^k \omega^2} \\
&= (-1)^k \frac{\omega^4 + 1}{\omega^2} \\
&= (-1)^k \frac{-\omega + 1}{\omega^2} \\
&= (-1)^k \frac{-\omega^2}{\omega^2} \\
&= -(-1)^k.\end{align*}This can be $ 1 $ or $ -1 $.
Hence, the possible values of $ \omega^n + \frac{1}{\omega^n} $ are $ \boxed{-2,-1,1,2} $.