Complex Sequence Product
A sequence $ (z_n) $ of complex numbers satisfies the following properties: $ z_1 $ and $ z_2 $ are not real. $ z_{n+2}=z_{n+1}^2z_n $ for all integers $ n\geq 1 $. $ \dfrac{z_{n+3}}{z_n^2} $ is real for all integers $ n\geq 1 $. $ \left|\dfrac{z_3}{z_4}\right|=\left|\dfrac{z_4}{z_5}\right|=2 $. Find the product of all possible values of $ z_1 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$