Complex Sequence Solution Count

A sequence of complex numbers $ z_0,z_1,z_2,\ldots $ is defined by the rule \[ z_{n+1}=\frac{\ iz_n\ }{\overline{z}_n}, \]where $ \overline{z}_n $ is the complex conjugate of $ z_n $ and $ i^2=-1 $. Suppose that $ |z_0|=1 $ and $ z_{2005}=1 $. How many possible values are there for $ z_0 $?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$