Complex Sequence Solution Count
A sequence of complex numbers $ z_0,z_1,z_2,\ldots $ is defined by the rule \[ z_{n+1}=\frac{\ iz_n\ }{\overline{z}_n}, \]where $ \overline{z}_n $ is the complex conjugate of $ z_n $ and $ i^2=-1 $. Suppose that $ |z_0|=1 $ and $ z_{2005}=1 $. How many possible values are there for $ z_0 $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$