Conic Section Foci
Let $ m $ be a constant not equal to $ 0 $ or $ 1 $. Then the graph of \[x^2 + my^2 = 4\]is a conic section with two foci. Find all values of $ m $ such that the foci both lie on the circle $ x^2+y^2=16 $. Enter all possible values of $ m, $ separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$