Conic Section Foci
Let $ m $ be a constant not equal to $ 0 $ or $ 1 $. Then the graph of \[x^2 + my^2 = 4\]is a conic section with two foci. Find all values of $ m $ such that the foci both lie on the circle $ x^2+y^2=16 $.
Enter all possible values of $ m, $ separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
If $ m > 0, $ then the graph of $ x^2+my^2 = 4 $ is an ellipse centered at the origin. The endpoints of the horizontal axis are $ (\pm 2,0), $ while the endpoints of the vertical axis are $ \left(0, \pm \frac{2}{\sqrt{m}}\right) $. If $ m < 1, $ then the vertical axis is longer, so it is the major axis, and the distance from the foci to the origin is \[\sqrt{\left(\frac{2}{\sqrt{m}}\right)^2 - 2^2} = \sqrt{\frac{4}{m} - 4}.\]Since the foci lie on the circle $ x^2+y^2=16, $ which has radius $ 4 $ and is centered at the origin, we must have \[\sqrt{\frac{4}{m}-4} = 4\]which gives $ m = \frac{1}{5} $. If $ m>1, $ then the horizontal axis is longer, so it is the major axis. But the endpoints of the horizontal axis are $ (\pm 2, 0), $ so it is impossible that the foci of the ellipse are $ 4 $ units away from the origin in this case.
If $ m<0, $ then the graph of $ x^2+my^2 = 4 $ is a hyperbola centered at the origin, with the vertices on the $ x- $axis. Its standard form is \[\frac{x^2}{2^2} - \frac{y^2}{\left(\sqrt{-\frac {4}m}\,\right)^2} = 1,\]so the distance from the foci to the origin is \[\sqrt{2^2 + \left(\sqrt{-\frac {4}m}\,\right)^2} = \sqrt{4 - \frac{4}{m}}.\]Therefore, we must have $ \sqrt{4 - \frac{4}{m}} = 4, $ which gives $ m=-\frac{1}{3} $.
Therefore, the possible values of $ m $ are $ m = \boxed{\frac{1}{5}, -\frac{1}{3}} $.