Coordinate Plane Path Count

On the $ xy $-plane, the origin is labeled with an $ M $. The points $ (1,0) $, $ (-1,0) $, $ (0,1) $, and $ (0,-1) $ are labeled with $ A $'s. The points $ (2,0) $, $ (1,1) $, $ (0,2) $, $ (-1, 1) $, $ (-2, 0) $, $ (-1, -1) $, $ (0, -2) $, and $ (1, -1) $ are labeled with $ T $'s. The points $ (3,0) $, $ (2,1) $, $ (1,2) $, $ (0, 3) $, $ (-1, 2) $, $ (-2, 1) $, $ (-3, 0) $, $ (-2,-1) $, $ (-1,-2) $, $ (0, -3) $, $ (1, -2) $, and $ (2, -1) $ are labeled with $ H $'s. If you are only allowed to move up, down, left, and right, starting from the origin, how many distinct paths can be followed to spell the word MATH?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$