Cosine Sequence Minimum
Let $ x $ be a real number such that the five numbers $ \cos(2 \pi x) $, $ \cos(4 \pi x) $, $ \cos(8 \pi x) $, $ \cos(16 \pi x) $, and $ \cos(32 \pi x) $ are all nonpositive. What is the smallest possible positive value of $ x $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
More generally, let $ t $ be a positive real number, and let $ n $ be a positive integer. Let
\[t = \lfloor t \rfloor + (0.t_1 t_2 t_3 \dots)_2.\]Here, we are expressing the fractional part of $ t $ in binary. Then
\begin{align*}
\cos (2^n \pi t) &= \cos (2^n \pi \lfloor t \rfloor + 2^n \pi (0.t_1 t_2 t_3 \dots)_2) \\
&= \cos (2^n \pi \lfloor t \rfloor + \pi (t_1 t_2 \dots t_{n - 1} 0)_2 + \pi (t_n.t_{n + 1} t_{n + 2} \dots)_2).\end{align*}Since $ 2^n \pi \lfloor t \rfloor + \pi (t_1 t_2 \dots t_{n - 1} 0)_2 $ is an integer multiple of $ 2 \pi, $ this is equal to
\[\cos (\pi (t_n.t_{n + 1} t_{n + 2} \dots)_2).\]This is non-positive precisely when
\[\frac{1}{2} \le (t_n.t_{n + 1} t_{n + 2} \dots)_2 \le \frac{3}{2}.\]If $ t_n = 0, $ then $ t_{n + 1} = 1 $. And if $ t_n = 1, $ then $ t_{n + 1} = 0 $ (unless $ t_{n + 1} = 1 $ and $ t_m = 0 $ for all $ m \ge n + 2 $.)
To find the smallest such $ x, $ we can assume that $ 0 < x < 1 $. Let
\[x = (0.x_1 x_2 x_3 \dots)_2\]in binary. Since we want the smallest such $ x, $ we can assume $ x_1 = 0 $. Then from our work above,
\[
\begin{array}{c}
\dfrac{1}{2} \le x_1.x_2 x_3 x_4 \dotsc \le \dfrac{3}{2}, \\
\\
\dfrac{1}{2} \le x_2.x_3 x_4 x_5 \dotsc \le \dfrac{3}{2}, \\
\\
\dfrac{1}{2} \le x_3.x_4 x_5 x_6 \dotsc \le \dfrac{3}{2}, \\
\\
\dfrac{1}{2} \le x_4.x_5 x_6 x_7 \dotsc \le \dfrac{3}{2}, \\
\\
\dfrac{1}{2} \le x_5.x_6 x_7 x_8 \dotsc \le \dfrac{3}{2}.\end{array}
\]To minimize $ x, $ we can take $ x_1 = 0 $. Then the first inequality forces $ x_2 = 1 $.
From the second inequality, if $ x_3 = 1, $ then $ x_n = 0 $ for all $ n \ge 4, $ which does not work, so $ x_3 = 0 $.
From the third inequality, $ x_4 = 1 $.
From the fourth inequality, if $ x_5 = 1, $ then $ x_n = 0 $ for all $ n \ge 6, $ which does not work, so $ x_5 = 0 $.
From the fifth inequality, $ x_6 = 1 $.
Thus,
\[x = (0.010101 x_7 x_8 \dots)_2.\]The smallest positive real number of this form is
\[x = 0.010101_2 = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} = \boxed{\frac{21}{64}}.\]