Cube's Vertex Distance Problem

A cube has a side length of $ s, $ and its vertices are $ A = (0,0,0), $ $ B = (s,0,0), $ $ C = (s,s,0), $ $ D = (0,s,0), $ $ E = (0,0,s), $ $ F = (s,0,s), $ $ G = (s,s,s), $ and $ H = (0,s,s) $. A point $ P $ inside the cube satisfies $ PA = \sqrt{70}, $ $ PB = \sqrt{97}, $ $ PC = \sqrt{88}, $ and $ PE = \sqrt{43} $. Find the side length $ s $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$