Cube's Vertex Distance Problem
A cube has a side length of $ s, $ and its vertices are $ A = (0,0,0), $ $ B = (s,0,0), $ $ C = (s,s,0), $ $ D = (0,s,0), $ $ E = (0,0,s), $ $ F = (s,0,s), $ $ G = (s,s,s), $ and $ H = (0,s,s) $. A point $ P $ inside the cube satisfies $ PA = \sqrt{70}, $ $ PB = \sqrt{97}, $ $ PC = \sqrt{88}, $ and $ PE = \sqrt{43} $. Find the side length $ s $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$