Cube Root Matrix Sum
Let
\[\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\]be a matrix with real entries such that $ \mathbf{M}^3 = \mathbf{I} $. Enter all possible values of $ a + d, $ separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
We can compute that
\[\mathbf{M}^3 = \begin{pmatrix} a^3 + 2abc + bcd & a^2 b + abd + bd^2 + b^2 c \\ a^2 c + acd + cd^2 + bc^2 & abc + 2bcd + d^3 \end{pmatrix}.\]Hence, $ a^2 b + abd + bd^2 + b^2 c = b(a^2 + ad + d^2 + bc) = 0, $ and $ a^2 c + acd + cd^2 + bc^2 = c(a^2 + ad + d^2 + bc) = 0 $.
Furthermore,
\[(\det \mathbf{M})^3 = \det (\mathbf{M}^3) = \det \mathbf{I} = 1,\]so $ \det \mathbf{M} = 1 $. In other words, $ ad - bc = 1 $.
From the equation $ b(a^2 + ad + bd^2 + bc) = 0, $ either $ b = 0 $ or $ a^2 + ad + d^2 + bc = 0 $. If $ b = 0, $ then
\[\mathbf{M}^3 = \begin{pmatrix} a^3 & 0 \\ a^2 c + acd + cd^2 & d^3 \end{pmatrix}.\]Hence, $ a^3 = d^3 = 1, $ so $ a = d = 1, $ and $ a + d = 2 $. Also, $ c + c + c = 0, $ so $ c = 0 $. Thus, $ \mathbf{M} = \mathbf{I} $.
Otherwise, $ a^2 + ad + d^2 + bc = 0 $. Since $ ad - bc = 1, $ this becomes
\[a^2 + ad + d^2 + ad - 1 = 0,\]which means $ (a + d)^2 = 1 $. Either $ a + d = 1 $ or $ a + d = -1 $.
Note that
\begin{align*}
\mathbf{M}^2 - (a + d) \mathbf{M} + (ad - bc) \mathbf{I} &= \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} - (a + d) \begin{pmatrix} a & b \\ c & d \end{pmatrix} + (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
&= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}.\end{align*}If $ a + d = 1, $ then
\[\mathbf{M}^2 - \mathbf{M} + \mathbf{I} = \mathbf{0}.\]Then $ (\mathbf{M} + \mathbf{I})(\mathbf{M}^2 - \mathbf{M} + \mathbf{I}) = \mathbf{0} $. Expanding, we get
\[\mathbf{M}^3 - \mathbf{M}^2 + \mathbf{M} + \mathbf{M}^2 - \mathbf{M} + \mathbf{I} = \mathbf{0},\]which simplifies to $ \mathbf{M}^3 = -\mathbf{I} $. This is a contradiction, because $ \mathbf{M}^3 = \mathbf{I} $.
Then the only possibility left is that $ a + d = -1 $. Note that
\[\mathbf{M} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}\]satisfies $ \mathbf{M}^3 = \mathbf{I}, $ so $ -1 $ is a possible value of $ a + d $.
Thus, the only possible values of $ a + d $ are $ \boxed{2, -1} $.