Cubic Polynomial Quotient
Let $ P(x) $ be a cubic polynomial such that $ P(0) = -3 $ and $ P(1) = 4 $. When $ P(x) $ is divided by $ x^2 + x + 1, $ the remainder is $ 2x - 1 $. What is the quotient when $ P(x) $ is divided by $ x^2 + x + 1 $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$