Custom Operation Solution
For any two real numbers $ x $ and $ y, $ define \[x \star y = ax + by + cxy,\]where $ a, $ $ b, $ and $ c $ are constants. It is known that $ 1 \star 2 = 3, $ $ 2 \star 3 = 4, $ and there is a non-zero real number $ d $ such that $ x \star d = x $ for any real number $ x $. What is the value of $ d $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$