Defined Function Domain

Lana defines a function $ f(x) $ which is given by the formula $$f(x) = x^2,$$ but only on a domain she has specified which consists of finitely many values $ x $; she leaves the function undefined for all other $ x $. Given that the range of $ f(x) $ is $ \{0,1,2,3,4,5,6,7,8,9\} $, what is the maximum number of points that could be in its domain?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$