Denominator Rationalization Result

Rationalize the denominator of $ \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} $. The answer can be written as $ \frac{A+B\sqrt{C}}{D} $, where $ A $, $ B $, $ C $, and $ D $ are integers, $ D $ is positive, and $ C $ is not divisible by the square of any prime. If the greatest common divisor of $ A $, $ B $, and $ D $ is 1, find $ A+B+C+D $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$