Denominator Rationalization Result
Rationalize the denominator of $ \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} $. The answer can be written as $ \frac{A+B\sqrt{C}}{D} $, where $ A $, $ B $, $ C $, and $ D $ are integers, $ D $ is positive, and $ C $ is not divisible by the square of any prime. If the greatest common divisor of $ A $, $ B $, and $ D $ is 1, find $ A+B+C+D $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$