Determinant With Real Numbers
Let $ a, $ $ b, $ $ c, $ $ p, $ $ q, $ and $ r $ be real numbers such that \[\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0.\]Assuming that $ a \neq p, $ $ b \neq q, $ and $ c \neq r, $ find the value of $ \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$