Digit Equation Sum
If $ A $, $ B $, and $ C $ represent three distinct digits from 1 to 9 and they satisfy the following equations, what is the value of the sum $ A+B+C $? (In the equation below, $ AA $ represents a two-digit number both of whose digits are $ A $.) $$A+B=C$$$$AA-B=2\times C$$$$C\times B=AA+A$$
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$