Digit Puzzle Solution

Let $ n = 3^{17} + 3^{10} $. It is known that $ 11 $ divides into $ n+1 $. If $ n $ can be written in base $ 10 $ as $ ABCACCBAB $, where $ A,B,C $ are distinct digits such that $ A $ and $ C $ are odd and $ B $ is not divisible by $ 3 $, find $ 100A + 10B + C $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$