Distinct Elements in Set
Suppose that $ *(n) = \left\{ n-2, n+2, 2n, \frac{n}{2} \right\} $. For example, $ *(6) = \{4, 8, 12, 3\} $. For how many distinct integers $ n $ does $ *(n) $ have exactly three distinct elements?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$