Distinct Range Count

Suppose the function $ f(x) $ is defined explicitly by the table $$\begin{array}{c || c | c | c | c | c} x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 0 & 0 & 1 & 3 & 6 \end{array}$$ This function is defined only for the values of $ x $ listed in the table. Suppose $ g(x) $ is defined as $ f(x)-x $ for all numbers $ x $ in the domain of $ f $. How many distinct numbers are in the range of $ g(x)?$

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$