Expected Win From Ball

Bin $ A $ has one white ball and four black balls. Bin $ B $ has three balls labeled $ \$1$ and one ball labeled $\$ 7 $. Bin $ W $ has five balls labeled $ \$8$ and one ball labeled $\$ 500 $. A game is played as follows: a ball is randomly selected from bin $ A $. If it is black, then a ball is randomly selected from bin $ B $; otherwise, if the original ball is white, then a ball is randomly selected from bin $ W $. You win the amount printed on the second ball selected. What is your expected win?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$