Fibonacci GCD Maximization
For $ n \ge 0 $, let $ F_n $ denote the $ n $th Fibonacci number (that is, $ F_0 = 0, F_1 = 1 $, and $ F_n = F_{n-1} + F_{n-2} $ for all $ n \ge 2 $). What is the greatest possible value of the greatest common divisor of two consecutive Fibonacci numbers?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$