Fibonacci Sequence Constants
The Fibonacci numbers are defined recursively by the equation \[ F_n = F_{n - 1} + F_{n - 2}\]for every integer $ n \ge 2 $, with initial values $ F_0 = 0 $ and $ F_1 = 1 $. Let $ G_n = F_{3n} $ be every third Fibonacci number. There are constants $ a $ and $ b $ such that every integer $ n \ge 2 $ satisfies \[ G_n = a G_{n - 1} + b G_{n - 2}.\]Find $ (a,b) $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$