First Odd Year With Common Factor
If $ 2004 $ is split after the third digit into a three-digit integer and a one-digit integer, then the two integers, $ 200 $ and $ 4 $, have a common factor greater than one. The years $ 2005 $ and $ 2006 $ each have this same property, too. What is the first odd-numbered year after $ 2006 $ that has this property?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$