First Odd Year With Common Factor

If $ 2004 $ is split after the third digit into a three-digit integer and a one-digit integer, then the two integers, $ 200 $ and $ 4 $, have a common factor greater than one. The years $ 2005 $ and $ 2006 $ each have this same property, too. What is the first odd-numbered year after $ 2006 $ that has this property?

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$