Floor Function Difference
For real numbers $ x $ and $ y, $ find all possible values of
\[\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor.\]Enter all possible values, separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
First, since $ \lfloor x + y \rfloor, $ $ \lfloor x \rfloor, $ $ \lfloor y \rfloor $ are all integers,
\[\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor\]must also be an integer.
We can write
\[x = \lfloor x \rfloor + \{x\},\]where $ \{x\} $ represents the fractional part of $ x $. Similarly, we can also write $ y = \lfloor y \rfloor + \{y\} $ and $ x + y = \lfloor x + y \rfloor + \{x + y\}, $ so
\begin{align*}
\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor &= (x + y - \{x + y\}) - (x - \{x\}) - (y - \{y\}) \\
&= \{x\} + \{y\} - \{x + y\}.\end{align*}Note that $ 0 \le \{x\}, $ $ \{y\}, $ $ \{x + y\} < 1, $ so
\[\{x\} + \{y\} - \{x + y\} > 0 + 0 - 1 = -1\]and
\[\{x\} + \{y\} - \{x + y\} < 1 + 1 - 0 = 2.\]Since $ \lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor = \{x\} + \{y\} - \{x + y\} $ is an integer, the only possible values are 0 and 1.
For $ x = y = 0, $
\[\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor = 0 - 0 - 0 = 0,\]and for $ x = y = \frac{1}{2}, $
\[\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor = 1 - 0 - 0 = 1.\]Therefore, the possible values of $ \lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor $ are $ \boxed{0,1} $.