Floor Function Sum 2
We write $ \lfloor X \rfloor $ to mean the greatest integer less than or equal to $ X $; for example $ \lfloor 3\frac{1}{2} \rfloor = 3 $. If $ N = \frac{1}{3} $, what is the value of $ \lfloor 10N \rfloor + \lfloor 100N \rfloor + \lfloor 1000N \rfloor + \lfloor 10,000N \rfloor $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$