Function Composition Series
Define $ f(x)=\frac{1+x}{1-x} $ and $ g(x)=\frac{-2}{x+1} $. Find the value of \[g(f(g(f(\dotsb g(f(12)) \dotsb ))))\]where the function $ f $ is applied 8 times, and the function $ g $ is applied 8 times, alternating between the two.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$