Function Domain Enumeration
We define a function $ f(x) $ such that $ f(14)=7 $, and if there exists an integer $ a $ such that $ f(a)=b $, then $ f(b) $ is defined and $ f(b)=3b+1 $ if $ b $ is odd $ f(b)=\frac{b}{2} $ if $ b $ is even. What is the smallest possible number of integers in the domain of $ f $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$