Function Domain Range Gap
Suppose we define $ \ell(n) $ as follows: If $ n $ is an integer from $ 0 $ to $ 20, $ inclusive, then $ \ell(n) $ is the number of letters in the English spelling of the number $ n; $ otherwise, $ \ell(n) $ is undefined. For example, $ \ell(11)=6, $ because "eleven" has six letters, but $ \ell(23) $ is undefined, because $ 23 $ is not an integer from $ 0 $ to $ 20 $. How many numbers are in the domain of $ \ell(n) $ but not the range of $ \ell(n)?$
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$