Functional Equation Analysis 3
The function $ f : \mathbb{R} \to \mathbb{R} $ satisfies
\[x^2 f(x) + f(1 - x) = -x^4 + 2x\]for all real numbers $ x $. Then $ f(x) $ can be uniquely determined for all values of $ x, $ except $ f(\alpha) $ and $ f(\beta) $ for some real numbers $ \alpha $ and $ \beta $. Compute $ \alpha^2 + \beta^2 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Replacing $ x $ with $ 1 - x, $ we get
\[(1 - x)^2 f(1 - x) + f(x) = -(1 - x)^4 + 2(1 - x) = -x^4 + 4x^3 - 6x^2 + 2x + 1.\]Thus, $ f(x) $ and $ f(1 - x) $ satisfy
\begin{align*}
x^2 f(x) + f(1 - x) &= -x^4 + 2x, \\
(1 - x)^2 f(1 - x) + f(x) &= -x^4 + 4x^3 - 6x^2 + 2x + 1.\end{align*}From the first equation,
\[x^2 (1 - x)^2 f(x) + (1 - x)^2 f(1 - x) = (1 - x)^2 (-x^4 + 2x) = -x^6 + 2x^5 - x^4 + 2x^3 - 4x^2 + 2x.\]Subtracting the second equation, we get
\[x^2 (1 - x)^2 f(x) - f(x) = -x^6 + 2x^5 - 2x^3 + 2x^2 - 1.\]Then
\[(x^2 (1 - x)^2 - 1) f(x) = -x^6 + 2x^5 - 2x^3 + 2x^2 - 1.\]By difference-of-squares,
\[(x(x - 1) + 1)(x(x - 1) - 1) f(x) = -x^6 + 2x^5 - 2x^3 + 2x^2 - 1,\]or
\[(x^2 - x + 1)(x^2 - x - 1) f(x) = -x^6 + 2x^5 - 2x^3 + 2x^2 - 1.\]We can check if $ -x^6 + 2x^5 - 2x^3 + 2x^2 - 1 $ is divisible by either $ x^2 - x + 1 $ or $ x^2 - x - 1, $ and we find that it is divisible by both:
\[(x^2 - x + 1)(x^2 - x - 1) f(x) = -(x^2 - x + 1)(x^2 - x - 1)(x^2 - 1).\]Since $ x^2 - x + 1 = 0 $ has no real roots, we can safely divide both sides by $ x^2 - x + 1, $ to obtain
\[(x^2 - x - 1) f(x) = -(x^2 - x - 1)(x^2 - 1).\]If $ x^2 - x - 1 \neq 0, $ then
\[f(x) = -(x^2 - 1) = 1 - x^2.\]Thus, if $ x^2 - x - 1 \neq 0, $ then $ f(x) $ is uniquely determined.
Let $ a = \frac{1 + \sqrt{5}}{2} $ and $ b = \frac{1 - \sqrt{5}}{2}, $ the roots of $ x^2 - x - 1 = 0 $. Note that $ a + b = 1 $. The only way that we can get information about $ f(a) $ or $ f(b) $ from the given functional equation is if we set $ x = a $ or $ x = b $:
\begin{align*}
\frac{3 + \sqrt{5}}{2} f(a) + f(b) &= \frac{-5 - \sqrt{5}}{2}, \\
\frac{3 - \sqrt{5}}{2} f(b) + f(a) &= \frac{-5 + \sqrt{5}}{2}.\end{align*}Solving for $ f(b) $ in the first equation, we find
\[f(b) = \frac{-5 - \sqrt{5}}{2} - \frac{3 + \sqrt{5}}{2} f(a).\]Substituting into the second equation, we get
\begin{align*}
\frac{3 + \sqrt{5}}{2} f(b) + f(a) &= \frac{3 - \sqrt{5}}{2} \left( \frac{-5 - \sqrt{5}}{2} - \frac{3 + \sqrt{5}}{2} a \right) + f(a) \\
&= \frac{-5 + \sqrt{5}}{2}.\end{align*}This means that we can take $ f(a) $ to be any value, and then we can set
\[f(b) = \frac{-5 - \sqrt{5}}{2} - \frac{3 + \sqrt{5}}{2} f(a)\]to satisfy the functional equation.
Thus, $ \alpha $ and $ \beta $ are equal to $ a $ and $ b $ in some order, and
\[\alpha^2 + \beta^2 = \left( \frac{1 + \sqrt{5}}{2} \right)^2 + \left( \frac{1 - \sqrt{5}}{2} \right)^2 = \boxed{3}.\]