Functional Equation Integer Solutions
The function $ f $ satisfies the functional equation \[f(x) + f(y) = f(x + y) - xy - 1\]for all real numbers $ x $ and $ y $. If $ f(1) = 1, $ then find all integers $ n $ such that $ f(n) = n $. Enter all such integers, separated by commas.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$