GCD Function Maximization
If $ a $ is a positive integer, then $ 3a^2+19a+30 $ and $ a^2+6a+9 $ are also positive integers. We define the function $ f $ such that $ f(a) $ is the greatest common divisor of $ 3a^2+19a+30 $ and $ a^2+6a+9 $. Find the maximum possible value of $ f(a)- a $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$