GCD of Consecutive Sums
Let the term $ S_n $ be the sum of the first $ n $ powers of $ 2 $. For instance, $ S_3 = 2^0 + 2^1 + 2^2 = 7 $. Find the largest possible value of the greatest common divisor of two consecutive terms, $ S_n $ and $ S_{n+1} $, for any $ n $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$