Geometric Arithmetic Sequence
A strictly increasing sequence of positive integers $ a_1 $, $ a_2 $, $ a_3 $, $ \dots $ has the property that for every positive integer $ k $, the subsequence $ a_{2k-1} $, $ a_{2k} $, $ a_{2k+1} $ is geometric and the subsequence $ a_{2k} $, $ a_{2k+1} $, $ a_{2k+2} $ is arithmetic. Suppose that $ a_{13} = 2016 $. Find $ a_1 $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$