Geometric Arithmetic Sequence

A strictly increasing sequence of positive integers $ a_1 $, $ a_2 $, $ a_3 $, $ \dots $ has the property that for every positive integer $ k $, the subsequence $ a_{2k-1} $, $ a_{2k} $, $ a_{2k+1} $ is geometric and the subsequence $ a_{2k} $, $ a_{2k+1} $, $ a_{2k+2} $ is arithmetic. Suppose that $ a_{13} = 2016 $. Find $ a_1 $.

  • 1
  • 2
  • 3
  • +
  • 4
  • 5
  • 6
  • -
  • 7
  • 8
  • 9
  • $\frac{a}{b}$
  • .
  • 0
  • =
  • %
  • $a^n$
  • $a^{\circ}$
  • $a_n$
  • $\sqrt{}$
  • $\sqrt[n]{}$
  • $\pi$
  • $\ln{}$
  • $\log$
  • $\theta$
  • $\sin{}$
  • $\cos{}$
  • $\tan{}$
  • $($
  • $)$
  • $[$
  • $]$
  • $\cap$
  • $\cup$
  • $,$
  • $\infty$