Geometric Series Digit Limit
The $ n^{\text{th}} $ term of a certain geometric series is given by $ a\cdot r^{n-1} $, where $ a $ and $ r $ are positive integers and $ r $ is greater than 1. Bill picks out $ k $ different numbers in this sequence, all of which have the same number of digits. What is the largest possible value of $ k $?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$