Golden Ratio Series
Let $ \tau = \frac{1 + \sqrt{5}}{2} $. Find
\[\sum_{n = 0}^\infty \frac{\lfloor \tau^n \rceil}{2^n}.\]Note: For a real number $ x, $ $ \lfloor x \rceil $ denotes the integer closest to $ x $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Note that $ \lfloor \tau^0 \rceil = \lfloor 1 \rceil = 1 $ and $ \lfloor \tau \rceil = 2 $.
Let $ \sigma = \frac{1 - \sqrt{5}}{2}, $ and let $ L_n = \tau^n + \sigma^n $. Then
\begin{align*}
L_n &= \tau^n + \sigma^n \\
&= (\tau + \sigma)(\tau^{n - 1} + \sigma^{n - 1}) - \tau \sigma (\tau^{n - 2} + \sigma^{n - 2}) \\
&= L_{n - 1} + L_{n - 2}.\end{align*}Also, $ L_0 = 2 $ and $ L_2 = 1, $ so $ L_n $ is an integer for all $ n \ge 0 $.
Furthermore,
\[\sigma^2 = \frac{3 - \sqrt{5}}{2} < \frac{1}{2},\]so for $ n \ge 2, $ $ |\sigma^n| < \frac{1}{2} $. Hence,
\[\lfloor \tau^n \rceil = L_n\]for all $ n \ge 2 $.
Let
\[S = \frac{L_2}{2^2} + \frac{L_3}{2^3} + \frac{L_4}{2^4} + \dotsb.\]Then
\begin{align*}
S &= \frac{L_2}{2^2} + \frac{L_3}{2^3} + \frac{L_4}{2^4} + \dotsb \\
&= \frac{L_0 + L_1}{2^2} + \frac{L_1 + L_2}{2^3} + \frac{L_2 + L_3}{2^4} + \dotsb \\
&= \left( \frac{L_0}{2^2} + \frac{L_1}{2^3} + \frac{L_2}{2^4} + \dotsb \right) + \left( \frac{L_1}{2^2} + \frac{L_2}{2^3} + \frac{L_3}{2^4} + \dotsb \right) \\
&=\left( \frac{1}{2} + \frac{1}{8} + \frac{S}{4} \right) + \left( \frac{1}{4} + \frac{S}{2} \right).\end{align*}Solving, we find $ S = \frac{7}{2} $.
Therefore,
\[\sum_{n = 0}^\infty \frac{\lfloor \tau^n \rceil}{2^n} = 1 + \frac{2}{2} + \frac{7}{2} = \boxed{\frac{11}{2}}.\]