Graph Distance Minimum
The smallest distance between the origin and a point on the graph of $ y=\frac{1}{\sqrt{2}}\left(x^2-3\right) $ can be expressed as $ \sqrt{a}/b $, where $ a $ and $ b $ are positive integers such that $ a $ is not divisible by the square of any integer greater than one. Find $ a+b $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$