Graphs Intersection Count
For how many integer values of $ k $ do the graphs of $ x^2+y^2=k^2 $ and $ xy = k $ not intersect?
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Suppose the graphs $ x^2 + y^2 = k^2 $ and $ xy = k $ intersect, which means the system
\begin{align*}
x^2 + y^2 &= k^2, \\
xy &= k
\end{align*}has a solution. Then
\[(x - y)^2 \ge 0.\]Expanding, we get $ x^2 - 2xy + y^2 \ge 0, $ so
\[k^2 - 2k \ge 0.\]This is satisfied by all integers except $ k = 1 $.
By the same token, $ (x + y)^2 \ge 0, $ or $ x^2 + 2xy + y^2 \ge 0 $. Hence,
\[k^2 + 2k \ge 0.\]This is satisfied by all integers except $ k = -1 $. We have found that $ k = 1 $ and $ k = -1 $ do not work.
If $ k = 0, $ then $ (x,y) = (0,0) $ is a solution.
Now, assume $ k \ge 2 $. The point $ (\sqrt{k},\sqrt{k}) $ lies on the hyperbola $ xy = k, $ and its distance from the origin is
\[\sqrt{k + k} = \sqrt{2k} \le \sqrt{k \cdot k} = k.\]Since there are points arbitrary far from the origin on the hyperbola $ xy = k, $ there must be a point on the hyperbola whose distance from the origin is exactly $ k, $ which means it lies on the circle $ x^2 + y^2 = k^2 $.
For $ k \le -2, $ the graph of $ xy = k $ is the graph of $ xy = -k $ rotated $ 90^\circ $ about the origin, so the case where $ k \ge 2 $ applies, i.e. the hyperbola $ xy = k $ and circle $ x^2 + y^2 = k^2 $ intersect.
Hence, the there are $ \boxed{2} $ integer values of $ k $ for which the graphs do not intersect, namely 1 and $ -1 $.