Hyperbola Closest Point
Let $ P $ be a point on the hyperbola $ x^2 + 8xy + 7y^2 = 225 $. Find the shortest possible distance from the origin to $ P $.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
Let $ (x,y) $ be a point on the hyperbola $ x^2 + 8xy + 7y^2 = 225 $. Effectively, we want to minimize $ x^2 + y^2 $. Let $ k = x^2 + y^2 $. Multiplying this with the equation $ x^2 + 8xy + 7y^2 = 225, $ we get
\[kx^2 + 8kxy + 7ky^2 = 225x^2 + 225y^2,\]so
\[(k - 225) x^2 + 8kxy + (7k - 225) y^2 = 0.\]For the curves $ x^2 + 8xy + 7y^2 = 225 $ and $ x^2 + y^2 = k $ to intersect, we want this quadratic to have a real root, which means its discriminant is nonnegative:
\[(8ky)^2 - 4(k - 225)(7k - 225) y^2 \ge 0.\]This simplifies to $ y^2 (36k^2 + 7200k - 202500) \ge 0, $ which factors as
\[y^2 (k - 25)(k + 225) \ge 0.\]If $ y = 0, $ then $ x^2 = 225, $ which leads to $ x = \pm 15 $. The distance from the origin to $ P $ is then 15. Otherwise, we must have $ k = x^2 + y^2 \ge 25 $.
If $ k = 25, $ then $ -200x^2 + 200xy - 50y^2 = -50(2x - y)^2 = 0, $ so $ y = 2x $. Substituting into $ x^2 + 8xy + 7y^2 = 225, $ we get $ 45x^2 = 225, $ so $ x^2 = 5, $ which implies $ x = \pm \sqrt{5} $. Thus, equality occurs when $ (x,y) = (\sqrt{5}, 2 \sqrt{5}) $ or $ (-\sqrt{5}, -2 \sqrt{5}), $ and the minimum distance from the origin to $ P $ is $ \boxed{5} $.