Inequality Constraint Maximization
Find the largest positive real number $ \lambda $ such that for any nonnegative real numbers $ x, $ $ y, $ and $ z $ such that $ x^2 + y^2 + z^2 = 1, $ the inequality \[\lambda xy + yz \le \frac{\sqrt{5}}{2}\]holds.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$