Infinite Series Sum 2
What is the value of the sum $ \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots + \frac{1}{n(n+1)} +\cdots + \frac{1}{9900} $? Express your answer as a common fraction.
- 1
- 2
- 3
- +
- 4
- 5
- 6
- -
- 7
- 8
- 9
- $\frac{a}{b}$
- .
- 0
- =
- %
- $a^n$
- $a^{\circ}$
- $a_n$
- $\sqrt{}$
- $\sqrt[n]{}$
- $\pi$
- $\ln{}$
- $\log$
- $\theta$
- $\sin{}$
- $\cos{}$
- $\tan{}$
- $($
- $)$
- $[$
- $]$
- $\cap$
- $\cup$
- $,$
- $\infty$
Solution
First of all, the denominators of these fractions are sometimes called ``oblong numbers'' since they make rectangles that are one unit longer than they are wide: $ 1 \times 2 = 2, 2 \times 3 = 6, 3 \times 4 = 12, 4 \times 5 = 20 $, etc. The last denominator in the expression is $ 99 \times 100 = 9900 $. Let's find the sum of a few terms at a time and see if we notice a pattern.
\begin{align*}
\frac{1}{2} + \frac{1}{6} &= \frac{2}{3}, \\
\frac{1}{2} + \frac{1}{6} + \frac{1}{12} &= \frac{3}{4}, \\
\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} &= \frac{4}{5},
\end{align*}and so on. The sum of the first $ n $ terms appears to be $ \frac{n}{n + 1} $.
Suppose that
\[\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{(n - 1)n} + \frac{1}{n(n + 1)} = \frac{n}{n + 1} = 1 - \frac{1}{n + 1}.\]Then
\[\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{(n - 1)n} = \frac{n - 1}{n} = 1 - \frac{1}{n}.\]Subtracting these equations, we obtain
\[\frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}.\]Note that we can algebraically verify this identity:
\[\frac{1}{n} - \frac{1}{n + 1} = \frac{n + 1}{n(n + 1)} - \frac{n}{n(n + 1)} = \frac{1}{n(n + 1)}.\]Therefore, the sum of the 99 fractions in the expression is
\begin{align*}
\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots + \frac{1}{n(n+1)} +\cdots + \frac{1}{9900} &= \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \dots + \left( \frac{1}{99} - \frac{1}{100} \right) \\
&= 1 - \frac{1}{100} = \boxed{\frac{99}{100}}.\end{align*}